中科荣获公益中国爱心救助定点医院 http://baidianfeng.39.net/a_xcyy/180416/6169886.html
近日,我院林天歆院长团队在国际知名学术期刊NatureBiomedicalEngineering发表题为“Adeep-learningpipelineforthediagnosisanddiscriminationofviral,non-viralandCOVID-19pneumoniafromchestX-rayimages”的论文,该研究成功开发了基于X线胸片的人工智能诊断系统用于新冠肺炎的诊断以及与其他常见的病毒及非病毒性肺炎的快速智能诊断,为新冠肺炎的防控增添了有力的支持。

年2月,全国爆发新冠肺炎疫情,我院林天歆院长、邹小广书记领衔医院团队第一时间将该研究成果应用于抗疫工作中,有效进行新冠病毒筛查,助力喀什地区打赢了抗击疫情攻坚战。特别是在年下半年喀什的抗疫过程中,该研究成果发挥了巨大作用,帮助喀什地区抗疫工作取得了阶段性胜利。

据了解,该研究联合中山大学、北京邮电大学、清华大学、澳门科技大学、四川大学、安徽医科大学、三峡大学、广州市再生医学卫生广东省实验室、南京大学、南方医科大学等24医院协作,由林天歆院长团队与北京邮电大学王光宇教授团队、澳门科技大学张康教授团队牵头合作,历时一年打造完成,我院林天歆院长为最后通讯作者。该研医院院长宋尔卫院士的大力支持和精心指导。

胸片及胸部CT是新冠肺炎筛查、诊断及病情评估的重要手段。胸片(CXR)十分简单经济而且普及,是筛查和诊断包括细菌性、病毒性在内的各类肺炎的首选手段,开发基于胸片的人工智能(AI)诊断系统能为新冠肺炎提供更加经济且易于快速普及的诊断工具。

由于X线显示病变不及CT清晰和全面,非病毒性肺炎、其他病毒性肺炎在胸片的影像特征比较相似,因此基于胸片的人工智能(AI)诊断系统开发需要大量的训练数据及更加巧妙地人工智能的算法及流程。既往的AI模型基于弱监督分类或基于注意力的卷积神经网络用于CXR的肺部疾病检测。然而,目前仍缺乏对可变的CXR图像条件具有鲁棒性并且能够满足实际临床应用标准的全自动分析流程。该研究使用包含,张CXR图像的多中心数据集,以及其他四个队列和多个国家的数千张图像进行了回顾性和前瞻性测试(图1),建立了基于CXR的图像标准化、病变可视化和疾病诊断,可用于识别新冠肺炎,并与其他病毒性肺炎及非病毒性肺炎相鉴别的全自动深度学习流程,该人工智能系统适用于多种环境,通过在流程中引入解剖学边界自动检测实现CXR图像标准化处理,同时为全自动学习和分析各种肺炎的影像学特征提供指引,不仅具有很强的通用性,还能很好地快速区分病毒性肺炎、其他类型肺炎和无肺炎(AUC=0.88-0.99),严重与不严重新冠肺炎(AUC=0.87),严重/不严重COVID-19肺炎、其他病毒性和非病毒性肺炎(AUC=0.82-0.98)。在独立的张CXR测试中,该人工智能系统的诊断效能与高级放射科医师相当,并能够显著提高初级放射科医师的诊断水平。

该人工智能系统在协助放射科医生快速准确诊断大流行性肺炎中具有重大的临床价值。可以在没有分子检测结果或者CT高端影像资源缺乏的情况下,能够快速准确诊断和评估新冠肺炎及其他病毒性肺炎的严重性,为临床早期干预提供决策支持。该系统可快速部署到各级医疗中心,为抗疫提供又一强有力的诊断工具。

▲图丨基于CXR的人工智能诊断系统的建立该研究团队自新冠以来持续


转载请注明地址:http://www.feiqizhongzl.com/fqzgb/15616.html